Two examples of Brauer-Manin obstruction to integral points

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Examples of Brauer–manin Obstruction to Integral Points

We give two examples of Brauer–Manin obstructions to integral points on open subsets of the projective plane.

متن کامل

On the Brauer–manin Obstruction for Integral Points

We give examples of Brauer–Manin obstructions to integral points on open subsets of the projective plane.

متن کامل

The Brauer–Manin obstruction

Let X be a smooth, geometrically irreducible variety over a field k. Recall that the defining property of an Azumaya algebra A is that, for any field K containing k and any point P ∈ X(K), we can evaluate A at P to get a central simple algebra A(P ) over K. In particular, suppose that k is a number field. Then, for each place v of k, we can evaluate A at points of X(kv) to get central simple al...

متن کامل

Efficient evaluation of the Brauer – Manin obstruction

The Brauer–Manin obstruction is a concept which has been very effective in finding counter-examples to the Hasse principle, that is, sets of polynomial equations which have solutions in every completion of the rational numbers but have no rational solutions. The standard way of calculating the Brauer–Manin obstruction involves listing all the p-adic solutions to some accuracy, at finitely many ...

متن کامل

The Brauer-Manin Obstruction and Cyclic Algebras

Borrowing from a classical construction for counterexamples to the Hasse principle, we show that for a certain family of affine varieties which do not satisfy the Hasse principle, the Brauer-Manin obstruction is not satisfied. The approach is elementary and requires little algebraic geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2008

ISSN: 0024-6093

DOI: 10.1112/blms/bdn081